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Abstract: - This paper describes, with extensive experimentation and simulation, three aspects of strong acid 

(Hydrochloric acid, HCl) and strong base (Sodium Hydroxide, NaOH) based pH neutralization process: (i) 

dynamic modeling, (ii) control, and (iii) optimization. Dynamic pH model based on Artificial Neural Network 

(ANN) has been used for various simulation studies involving servo and regulatory operations in Fuzzy Logic 

Control (FLC) scheme, and in optimization of pH controller parameters. This paper compares performance 

variables, such as Integral of Squared Errors (ISE), and maximum overshoot or undershoots, of optimized fuzzy 

control technique for servo and regulatory operations. The present work also describes finding optimum 

parameter settings of the pH controller using various search and optimization techniques such as Genetic 

Algorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO), and the convergence of 

optimization techniques. 

 

Key-Words: - pH neutralization process, artificial neural network, system identification, fuzzy logic, nonlinear 

control, genetic algorithm, particle swarm optimization, differential evolution 

 

1 Introduction 
In recent years, there is a major spurt in 

modernization of industrial plants through process 

automation since the new competitive business 

strategy is based on pricing, production, scheduling 

and delivery-time [1]. Process automation is 

essential for economical plant operation through 

efficient techniques for energy utilization and waste 

minimization, and compliance to laws concerning 

increased safety levels and reduction in 

environmental pollution. The far-reaching 

applications of pH measurement and control in 

modern commerce and industry necessitated 

development of controllers that permit pH processes 

to be regulated automatically. To deal with severe 

nonlinearities and address concerns of varying 

operating conditions and parameter variations in pH 

measurement and control applications, rigorous 

dynamic pH model are developed using first 

principle and system identification methods [2-8]. 

However, first principle based models do not 

represent true and realistic behavior of process, and 

system identification based block-structured models 

developed using experimental data and some insight 

into the system are limited by choice of suitable 

nonlinear structure and inability to accurately 

estimate model parameter. System identification 

technique based on input-output behavior of the 

system and without any knowledge of system 

configuration, such as Artificial Neural Network 

(ANN), has been very popular and successful, over 

last two decade, with wide range of nonlinear 

system applications. ANN based modeling is 

inspired by biological neural networks and it 

comprises a set of interconnected nonlinear 

processing element known as artificial neuron. ANN 

has an excellent ability to learn nonlinear dynamics 

of a complex process because of its inherent parallel 

and distributed configuration. ANN based model 

predictive control techniques have been extensively 

developed for pH neutralization process [9-13]. 

The focus of advanced control methodologies now a 

day is to develop intelligent control algorithm based 

on computational intelligence paradigms e.g. ANN, 

fuzzy logic, evolutionary computation such as 

Genetic Algorithm (GA) and Differential Evolution 

(DE), swarm intelligence such as Particle Swarm 

Optimization (PSO). Fuzzy logic introduced concept 

of linguistic variables, fuzzy conditional statements 

and Fuzzy Inference System (FIS) to analyze an ill-

defined complex systems and decision processes, 

and brought an unconventional shift in nature of 
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computing based on words and perceptions [14-17]. 

Zadeh discussed about unconventional perspectives 

of fuzzy logic, namely graduation, granulation, 

precisiation and the concept of a generalized 

constraint, and summarized that in large measure, 

the real-world is a fuzzy world and to deal with 

fuzzy reality we need fuzzy logic [18]. Fuzzy logic 

based pH control has been developed to obtain 

intelligent equivalent of the conventional 

counterpart such as PI, PD, PID and sliding-mode, 

and adaptive and model predictive control 

techniques [19-32]. 

Many researchers have utilized global optimization 

techniques based on evolutionary algorithms such as 

Genetic Algorithm (GA) and Differential Evolution 

(DE), and swarm algorithm such as Particle Swarm 

Optimization (PSO) for controller optimization. 

Evolutionary algorithms are population based search 

techniques in which optimal solution is reached on 

the basis of Darwin's theory of biological evolution. 

Over number of years, various but independent 

types of evolutionary algorithms were developed by 

many scientists and researchers with an aim of 

utilizing them for optimal solution of various 

engineering problems. However, GA conceived by 

Holland and its variants received wide attention [33-

34]. GA is also applied for parameters optimization 

of various controllers [35-43]. Similarly, DE is a 

stochastic evolutionary algorithm in which 

optimization function parameters are represented as 

floating-point variables [44-46]. The performance of 

DE in optimization of many real-valued, multi-

modal functions is found to be superior in 

comparison with many other evolutionary 

optimization methods. DE has also found 

applications in industrial automation and control 

[47-49]. PSO, on the other hand, is a population 

based stochastic search technique which simulates 

the movement of organisms such as bird flocking or 

fish schooling [50]. The main feature of PSO is 

mutual and social cooperation of individual particles 

where they take a decision on basis of current and 

previous exchanged information with their 

neighboring particles in population. Many 

researchers have used particle swarm algorithm in 

optimization problems [51-56]. 

Although researchers have proposed many pH 

control schemes using different techniques such as 

conventional, adaptive and intelligent, however 

there are still few considerable challenges in 

dynamic modeling, control and optimization of pH 

neutralization process. First, HCl is an important 

and widely used chemical in steel pickling process 

in iron and steel industry, ore processing in mining 

industry, wastewater treatment in food processing, 

and neutralization reaction in chemical 

manufacturing, but strong acid-strong base 

neutralization has not been investigated extensively 

and many proposed dynamic pH models and 

subsequent control schemes are based on weak acid-

strong base neutralization process. Second, first 

principle based model does not represent all the 

nonlinear dynamics of pH neutralization system, 

and the random variations in pH sensor values and 

process parameter variations cannot be accounted in 

first principle model. All these necessitates 

development of ANN based dynamic pH model 

using experimental values, which has capability to 

learn highly nonlinear behavior. Third, reported 

works in literature do not provide a comprehensive 

performance comparison of controller parameter 

optimization using GA, DE and PSO for pH control 

of strong acid-strong base neutralization process.  

 

 

2 System description and 

identification 
Armfield

®
 Process Control Teaching System 

(PCT40) with Process Vessel Accessory (PCT41) 

having constant volume of Vs = 2000 mL and pH 

Sensor Accessory (PCT42) with a voltage output of 

0 to 5 V has been used as a pH neutralization 

system. Fig. 1(a) shows the schematic diagram of 

Armfield pH neutralization system consisting of 

important components pertaining to present work. 

The PCT40 has peristaltic pumps A and B which 

regulate flow of hydrochloric acid (HCl) and 

sodium hydroxide (NaOH) having concentrations Ca 

(0.01778 mol/L) and Cb (0.01259 mol/L) 

respectively. Eq. (1) and (2) gives linear regression 

based estimate for flowrates of pumps A and B, Fa 

and Fb, for different values of speeds of pumps A 

and B, Sa and Sb, with values of statistical 

coefficient R
2
 as 0.9985 and 0.9984, respectively. 

The pH neutralization process takes place in PCT41 

with perfect mixing and constant maximum volume 

(Vs). The pH probe PCT42 is calibrated against 

buffer pH solutions of 4, 7 and 9.2, and linear 

regression analysis is applied to obtain relationship 

between sensor voltage and equivalent pH, with 

statistical coefficient R
2
 equals 0.9998, as shown in 

Eq. (3). Fig. 1(b) shows the dynamic response of pH 

sensor obtained by transferring the pH sensor from 

one standard buffer solution to another and then 

stirring it. There is negligible delay in pH sensor 

response since approximately two second time is 

elapsed on transferring the pH sensor from one 

buffer to another and then stirring it. Thus, we will 
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consider entire process lag to be associated with its 

mixing dynamics. 

Fa = 0 for 0 Sa< 18; (0.0599 Sa - 0.8761) for 18  

Sa 100                               (1) 

Fb = 0 for 0  Sb< 18; (0.0680 Sb - 0.9251) for 18  

Sb100                               (2) 

pH = 2.6114 VpH + 0.1868                 (3) 
Using standard universal synchronous bus interface 

the PCT40 communicates with LabVIEW software 

installed on a personal computer having Windows 

operating system. The PCT40 interface device 

driver contains a dynamic link library (DLL) file 

which stores various input-output analog and digital 

control signal values. The analog signals between 0 

V or 0% to 5 V or 100% are stored in 12-bit signed-

magnitude representation as 000000000000 to 

011111111111 in binary or 0 to 2047 in decimal 

whereas the digital signals either 0 V or 5 V are 

stored in 1-bit representation as 0 or 1 in binary, 

respectively. LabVIEW software accesses the DLL 

file for following functionality: read analog input, 

pH probe value from channel 11 (Ch11); write 

analog outputs, pump A and B speed values to 

digital-to-analog converters DAC0 and DAC1 

respectively; write digital output, stirrer signal value 

to digital output line 7 (DO7). 

Fig. 2(a) shows the speeds of pumps A and B at 

each sampling instants and Fig. 2(b) shows the 

corresponding pH response, where number of 

collected samples are 32750 at sampling instants of 

1 second. We have used the tapped delay line 

approach, mainly due to its simplicity of 

implementation using established feedforward 

neural network architecture and supervised 

Levenberg–Marquardt (LM) training algorithm. The 

feedforward network uses current value of pumps 

speed, and past values of pH and pumps speed as 

the network inputs, to predict current value of pH as 

the network output. The resulting feedforward 

architecture is equivalent to nonlinear 

autoregressive network with external inputs 

(NARX) which can be described using Eq. (4). 

pH(i) = f(Sa(i-d),....,Sa(i),Sb(i-d),....,Sb(i),pH(i-d), 

....,pH(i-1))                                                             (4) 

where 'i' is current sample number that varies from 

11 to 32750, and number of delayed samples 'd' is 3. 

The LM training algorithm gives training MSE of 

5.175×10
-4

, validation MSE of 4.535×10
-4

, and 

testing MSE of 4.671×10
-4

, at 201
th
 epoch, and 

training stops after next 6 epochs. It is found that 

magnitude of error never exceeds 0.4 pH unit for 

entire data set of 32740 samples. Also more than 

99% of those errors lie within magnitude range of 

0.1 pH unit. 

 

3 Optimized Fuzzy Logic based 

Control Schemes 
The fuzzy logic controller structure is based on 

Mamdani Fuzzy Inference System (FIS) which uses 

‘AND’ fuzzy operator, ‘Mamdani’ fuzzy 

implication, ‘max-min’ fuzzy aggregation, and 

‘centre of gravity’ defuzzification. The input 

variables of fuzzy logic controller for pH 

neutralization process are error e(k) and change in 

error ce(k) at k
th
 sampling instant. After dividing 

the input variables e(k) and ce(k) with scaling 

factors K1 and K2, we obtain normalized error and 

change in error, e∗(k) = e(k) K1⁄ and ce∗(k) =
ce(k) K2⁄ , respectively. The signal multiplexer 

combines e∗(k) and ce∗(k) to give vector 
[e∗(k), ce∗(k)] as input to Mamdani FIS. The 

Universe of Discourse (UOD) of input linguistic 

variables e∗(k) and ce∗(k) are [-1, 1], in pH. After 

multiplying the normalized change in output co∗(k), 
which is defuzzified output of Mamdani FIS, by the 

scaling factor K3, we obtain output variable 

co(k) = co∗(k) × K3 of fuzzy logic controller. The 

UOD of output linguistic variable co∗(k) is [-1, 1], 

in %. The input and output linguistic variables of 

Mamdani FIS has seven linguistic values each, 

namely Negative Large (NL), Negative Medium 

(NM), Negative Small (NS), Zero (ZE), Positive 

Small (PS), Positive Medium (PM), and Positive 

Large (PL). The membership functions associated 

with linguistic values of e∗, ce∗, and co∗are shown 

in Fig. 3. Since fuzzy rules are culmination of 

experience and knowledge of an operator, the 

proposed 49 fuzzy rules for pH control of 

neutralization process ensure the stability of fuzzy 

controller. The individual fuzzy rule can be 

represented using following structure shown in Eq. 

(5). 

FRl: IF e∗ is m AND ce∗ is n, THEN co∗ is MFmn

                   (5) 

where l = 7m + n - 7; m, n = 1, 2, 3, 4, 5, 6, 7 

represents NL, NM, NS, ZE, PS, PM, PM 

respectively; MF11, MF12, MF13, MF14, MF21, MF22, 

MF23, MF31, MF32, MF41 represents NL; MF15, 

MF24, MF33, MF42, MF51 represents NM; MF16, 

MF25, MF34, MF43, MF52, MF61 represents NS; MF17, 

MF26, MF35, MF44, MF53, MF62, MF71 represents ZE; 

MF27, MF36, MF45, MF54, MF63, MF72 represents PS; 

MF37, MF46, MF55, MF64, MF73 represents PM; 

MF47, MF56, MF57, MF65, MF66, MF67, MF74, MF75, 

MF76, MF77 represents PL. 

In this work, we have used feedback control of 

Armfield pH neutralization process in which pH is 

Controlled Variable (CV), speed of acid pump A 

(Sa) is Disturbance Variable (DV), and speed of 
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           Fig. 1(a) Armfield pH neutralization system schematic         Fig. 1(b) Dynamic response of pH sensor 

 

 
Fig. 2(a) Pumps speed at each sampling instants for system identification 

 

 
Fig. 2(b) pH response at each sampling instants for system identification 

 

 
Fig. 3 Fuzzy membership functions of normalized error/change in error/change in output 
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(a)                                                                                          (b) 

Fig. 4 Feedback control of pH neutralization process for (a) offline simulation on ANN based dynamic model of Armfield - pH00 (b) 

online experimental validation on Armfield - pH01 

                                                                                    

 
Table 1 Parameters for GA, DE, and PSO techniques based pH control system 

Technique Parameters 

Common  

GA, DE, and 

PSO 

parameters 

No. of variables (n) = 3; No. of population members (L) = 20; No. of generations (G) = 50 for offline simulation and 5 

for online validation;   Range of population members (for GA and DE)/range of particles positions (for PSO) [KL;KU] = 

[K1L, K2L, K3L;K1U, K2U, K3U] = [6 0.2 6;30 1 30]; Minimum ISE (ISE1); Minimum ISE desired (ISE1L) = 0;  Absolute 

difference between minimum ISE for two successive generations (DISE1L) = 0;  pH values range for online validation, 

[pHLB, pHUB] where pHUB = (pHSP)initial + 0.1, pHLB = (pHSP)initial - 0.1;  Nominal setting of manipulating variable (MV) 

for online validation, MV0 = 38.5; Nominal setting of disturbance variable (DV) for online validation, DV0 = 35; 

Saturation limiter for MV, [MVLB, MVUB] = [18, 80]; Steady-state values at setpoint (pHSP)initial used as initial 

conditions for offline simulations, [Sa(1), Sb(1), pH(1);Sa(2), Sb(2), pH(2);Sa(3), Sb(3), pH(3)] are [35, 39.59, 5.95;35, 

39.34, 5.97;35, 39.56, 5.96]  at (pHSP)initial = 6, [35, 38.29, 6.99;35, 37.99, 7.01;35, 37.99, 7.01]  at (pHSP)initial = 7, [35, 

39.97, 7.96;35, 39.72, 7.97;35, 39.60, 7.98]  at (pHSP)initial = 8, [35, 39.42, 9.01;35, 39.24, 9.02;35, 39.22, 9.02]  at 

(pHSP)initial = 9;  Step changes in setpoint, from (pHSP)initial to (pHSP)final, for servo operation with DV = DV0 are 6 to 7, 7 

to 8, 8 to 9, 9 to 8, 8 to 7, 7 to 6;  Step changes in disturbance variable, from (DV)initial to (DV)final, for regulatory 

operation at each setpoint (pHSP)final = 6, 7, 8, 9 are 35 to 30, 30 to 35, 35 to 40, 40 to 35; Time duration for servo 

operation i.e. for each step change from (pHSP)initial to (pHSP)final = 200 seconds each for offline simulation and online 

validation; Time duration for regulatory operation i.e. for each step changes from (DV) initial to (DV)final = 100 seconds 

each for offline simulation and online validation 

Additional 

GA 

parameters 

Elite count (EC) = 2; Crossover rate (CR) = 0.8;  Mutation scale (MSC) = 0.1; Mutation shrink (MSH) = 0.1; 

Population (Pop);  Fitness function values (ISE); Normalized expectation (EN); Elite kids (EK); Crossover kids (CK); 

Mutation kids (MK); No. of crossover kids (NCK); No. of mutation kids (NMK); No. of crossover plus mutation 

parents (NCMP); Parents index for crossover and mutation (ICM); Starting parents index for mutation (IM) 

Additional 

DE 

parameters 

Weight factor (Weight) = 1; Crossover rate (CR) = 0.8; Number of random shuffling (NS) = 5;  Initial population 

(Pop0); Temporary population obtained using DE (PopT); Temporary fitness function values (ISET);  Acceptable 

fitness function values after performance comparison (ISE) 

Additional 

PSO 

parameters 

Initial particle inertia (C0) = 0.9; Lower and upper bounds for particle inertia [CLB, CUB] = [0.4, 0.9]; Cognitive 

attraction (C1) = 0.5; Social attraction (C2) = 2; Initial particle velocity (V0); Particle inertia (C); Particle velocity (V); 

Fitness function values (ISE); Local best position of last generation (LBX); Local best ISE of last generation (LBISE); 

Global best value (GBISE1); Array of global best values (GBISE); Global best member (GBK) 

 

 
For i = 1 to L 

Initialize errors [e(1), e(2), e(3)], change in errors[ce(1), ce(2), ce(3)], and ISE [ISEi(1), ISEi(2), ISEi(3)] 

   For k = 4 to Duration for servo and regulatory operation (T) 

      Read pHSP(k) and Sa(k), and calculate e*(k), ce*(k), and co*(k)  

      Update base flowrate Sb(k) = Sb(k-1) + co(k), and limit base flowrate such that MVLB ≤ Sb(k) ≤ MVUB 

      Estimate pH(k) using dynamic ANN model, and obtain fitness function value ISEi(k) = ISEi(k-1) + e(k)×e(k) 

   End 

End 

Obtain ISE = [ISE1; ISE2; ISE3; ...; ISEL] 

Fig. 5(a) Pseudocode to evaluate fitness function for offline simulation (pH00) 
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For i = 1 to L 

   Write in DLL to start stirrer, read from DLL to obtain pH sensor voltage, and estimate pH 

   While initial pH is not within range [pHLB, pHUB] % Start pH process initialization 

      If pH <pHLB = (pHSP)initial - 0.1, then write in DLL to set Sa = DV0 = 35, Sb = 35+5 

      If pH >pHUB = (pHSP)initial + 0.1, then write in DLL to set Sa = DV0 = 35, Sb = 35+0 

   End % End pH process initialization 

   Initialize Sa = DV0, Sb = MV0, ISE = 0, pHSP, DV 

   For m = 1 to Number of Set points % Begin pH control 

      For k = 1 to T% For each servo and regulatory operations 

         Estimate pH(k), e∗(k), ce∗(k), and co*(k)  

         Update base flowrate Sb(k) = Sb(k-1) + co(k), and limit base flowrate such that MVLB ≤ Sb(k) ≤ MVUB 

         Write in DLL to update Sa and Sb, update fitness function value ISEi(k) = ISEi(k-1) + (e(k))2 

      End % For each servo and regulatory operations 

   End % End pH control 

End 

Obtain ISE = [ISE1; ISE2; ISE3; ...; ISEL] 

Fig. 5(b) Pseudocode to evaluate fitness function for online experimentation (pH01) 

               
base pump B (Sb) is Manipulated Variable (MV). 

Under nominal operating conditions, CV is 

maintained at a set-point value (pHSP) with zero 

error as input to the pH controller, and manipulated 

and disturbance variables have values MV0 and 

DV0 respectively. Fig. 4(a) shows block diagram of 

feedback control of pH neutralization process for 

simulation using fuzzy logic controller. 

Manipulating variable is subjected to a saturation 

limiter in order to maintain Sb(k) within bound 

[MVLB, MVUB]. The simulated output pH(k) of 

ANN based dynamic pH model depends upon 

present inputs [Sa(k), Sb(k)], and past three values 

of inputs-output [Sa(k − 1), Sb(k − 1), pH(k − 1)] 
to [Sa(k − 3), Sb(k − 3), pH(k − 3)]. To evaluate 

performance of fuzzy logic based pH controller, 

fitness function ISE(k) is evaluated. Fig. 4(b) shows 

block diagram of feedback control of pH 

neutralization process for real-time experimental 

validation on Armfield pH neutralization system 

using LabVIEW. Since we are considering a real, 

physical, and constantly stirred pH neutralization 

process, the initial pH range must be maintained 

within bound [pHLB, pHUB] to ensure approximately 

same initial conditions. For satisfactory 

performance, pH controller parameters, namely [K1, 

K2, K3], must be tuned for given operating 

conditions using global optimization techniques. In 

this work we have used Genetic Algorithm (GA) 

and Differential Evolution (DE) belonging to 

evolutionary algorithm, and Particle Swarm 

Optimization (PSO) of swarm algorithm, for offline 

tuning of fuzzy logic controller, and also for online 

tuning of fuzzy logic controller. The various 

parameters for GA, DE, and PSO techniques based 

pH control system are given in Table 1. Also, brief 

steps for implementation of GA, DE, and PSO 

techniques for pH control system are given in 

sections 3.1 to 3.3 respectively, and sections 4.1 to 

4.3 give their performance comparison for servo-

regulatory (SR) operations in pH neutralization 

process. 

 

3.1 Genetic Algorithm (GA) based 

Optimized pH Controller 
First step in GA optimization is to create initial 

population (GA01) of type ‘double’ and matrix size 

L × n where 'L' is the no. of individual population 

members and 'n' is the no. of variables in each 

population member. The randomly generated 

individuals are uniformly distributed over entire 

initial population range, [K1L, K2L, K3L; K1U, K2U, 

K3U] where the phrases 'L' and 'U' in subscripts 

represents the lower and upper respectively. Each 

individual member in the population represents a 

potential solution to the optimization problem under 

consideration. The individual population members 

evolve through successive iterations called 

generations. In order to evaluate fitness function, 

pH00 for offline and pH01 for online operations as 

given in Fig. 5(a) and Fig. 5(b) respectively, during 

each generation, overall ISE is calculated for each 

individual member of the population. To rank and 

scale evaluated fitness values, and determine elite 

kids ‘EK’ (GA02), the fitness values of the 

individuals are ranked between 1 and L such that the 

elitist individual member having minimum fitness 

value (ISE1) has the rank as 1, the next elite 

individual member with next lowest fitness value 

has the rank as 2, and similarly, the individual 

member with highest fitness values has the rank as 

L. The ranked individual members are assigned 

scaled values inversely proportional to square root 

of their rank. The assigned scaled values are used to 

select parents for crossover and mutation (GA03) 

operations so that offspring kids can be produced for 

next generation. In GA03, the stochastic uniform 

selection operator is represented by a roulette-wheel 
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in which each parent corresponds to a portion of the 

wheel proportional to its scaled value. The GA 

moves along the wheel in steps of equal size and, at 

each step GA allocates a parent to the portion of 

roulette-wheel it occupies. To create crossover kids 

‘CK’ (GA04), GA uses scattered crossover operator 

to combine a pair of parents from allocated parents 

for crossover operation. To create temporary 

mutation kids (GA05), GA uses Gaussian mutation 

operator to apply random changes to a single parent 

from allocated parents for mutation operation using 

parameters namely mutation scale, mutation shrink, 

current generation, and total generation. Since there 

is a possibility that mutation kids may go out of 

initial population range, it is required to check 

boundary conditions for mutation kids ‘MK’ 

(GA06). In case any mutation kid variable is out of 

range, the concerned variable is regenerated using 

process similar to GA01. For continuation of GA, it 

is required to check termination criteria (GA07). If 

any criteria are satisfied, then elitist kid with least 

ISE is saved as global optimal solution and process 

is stopped. Otherwise, elite kids, crossover kids, and 

mutation kids are combined to create the next 

generation population, and the complete procedure 

of fitness function evaluation to next generation 

population creation is again repeated. Fig. 6(a), Fig. 

6(b), and Fig. 6(c) shows LabVIEW block diagrams 

for online implementation of GA based pH 

controller parameters optimization, fitness function 

evaluation, and Mamdani based FLC respectively. 

 

3.2 Differential Evolution (DE) based 

Optimized pH Controller 
Similar to GA01, first step in DE optimization is to 

create initial population (DE01) of type ‘double’ 

and matrix size L × n, and the individual population 

members evolve through successive generations. 

Also, during each generation, in order to evaluate 

fitness function (pH00 for offline and pH01 for 

online operations), overall ISE is calculated for each 

individual member of the population. To select 

competitive population members for current 

generation (DE02), ISE of individual members in 

present generation are compared with corresponding 

ISE in the last generation, and the evolved 

individual member is accepted only in case its 

fitness value is improved. The most important step 

in DE is differential mutation in which weighted 

difference of two population members are added to 

third one. In order to keep the three population 

members distinct, it is necessary to subject current 

population members with random shuffling (DE03). 

To create trial population with differential mutation 

and crossover (DE04), the resulting differential 

mutation quantities and last population members are 

subjected to crossover. The crossover operation in 

DE increases the diversity of differential mutation 

operation. It is required to check boundary 

conditions for trial population (DE05), and in case 

any variable is out of range, then new variable value 

is regenerated using DE01. Similar to GA07, we 

need to check termination criteria (DE06). On 

termination, the best member with minimum ISE is 

saved as global optimal solution. Fig. 7 shows 

LabVIEW block diagrams for online 

implementation of DE based pH controller 

parameters optimization. 

 

3.3 Particle Swarm Optimization (PSO) 

based Optimized pH Controller 
First step in PSO is to create initial particles position 

(PS01) of type ‘double’ and matrix size L × n, 

similar to GA01. The particles are assigned an 

initial velocity with magnitude same as 

corresponding particle position, and an initial inertia 

whose magnitude is same for all particles. Over 

successive generations, the particles update their 

velocity to reach the global optimal position based 

on their global and local best positions which are 

decided on the basis of fitness function values. In 

order to evaluate fitness function (pH00 for offline 

and pH01 for online operations) during each 

generation, overall ISE is calculated for each 

individual particle of the population. To determine 

global and local best particles positions and fitness 

function values (PS02), it is required for algorithm 

to compare present fitness function values with past 

values. In a particular generation, a particle is 

regarded as global best if it has lowest ever ISE, and 

local best if it has ISE less than that of 

corresponding particle in immediate preceding 

generation. For next generation, it is required to 

update particles velocity, position and inertia 

(PS03). To update individual particle velocity 

following three terms are added: First - current 

inertia multiplied with current velocity; Second - 

local best position minus current position is 

multiplied with a random number and a cognitive 

attraction constant; Third - global best position 

minus current position is multiplied with a random 

number and a social attraction constant. The current 

position is added with updated velocity in order to 

obtain updated individual particle position. The 

particle inertia is reduced with successive 

generations till it reaches lowest bound value. It is 

required to check boundary conditions for particles 

position (PS04), and in case any variable is out of 

range, then new variable value is regenerated using 

PS01. Similar to GA07, we need to check 
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Fig. 6(a) LabVIEW block diagram implementation of GA optimization for fuzzy logic based pH controller 

 
Fig. 6(b) LabVIEW block diagram to evaluate fitness function (pH01 for online) 

 
Fig. 6(c) LabVIEW block diagram for Mamdani FIS based fuzzy logic controller (FL01) 
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Fig. 7 Flowchart for DE based pH controller parameters optimization 

 
Fig. 8 Flowchart for PSO based pH controller parameters optimization 

 

termination criteria (PS05). On termination, the 

global best particle position with minimum ISE is 

saved as global optimal solution. Fig. 8 shows 

LabVIEW block diagrams for online 

implementation of PSO based pH controller 

parameters optimization. 

 

 

4 Simulation and Experimental 

Results and Discussions 

To evaluate optimized FLC scheme based on Servo 

and Regulatory (SR) operations, the SR operations 

has been divided in six cases, namely SR1, SR2, 

SR3, SR4, SR5, and SR6, to cover dynamic pH 

range from 6 to 9. For servo operations, step 

changes in setpoint, from (pHSP)initial to (pHSP)final i.e. 

6 to 7, 7 to 8, 8 to 9, 9 to 8, 8 to 7, and 7 to 6, are 

introduced for 200 seconds with nominal acid flow 

rate as Sa = DV0 i.e. 35%. For regulatory 

operations, step changes in disturbance variable, 

from (DV)initial to (DV)final i.e. 35% to 30%, 30% to 
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35%, 35% to 40%, and 40% to 35%, are introduced 

consecutively for 100 seconds at each setpoint 

(pHSP)final i.e. 7, 8, 9, 8, 7, and 6. Thus, SRi, where i 

= 1, 2, 3, 4, 5, and 6, involves servo operation of 

200 seconds followed by regulatory operations of 

400 seconds. Therefore, entire duration for SR 

operations is 3600 seconds. 

 

4.1 Offline Optimized FLC Schemes for 

Servo and Regulatory Operations 

Offline optimization of fuzzy logic controller is 

carried out using MATLAB software in order to 

obtain optimal values of K1, K2, and K3. The 

performance of offline optimized fuzzy logic 

controller is evaluated on Armfiled pH 

neutralization process using LabVIEW software. 

Fig. 9(a) shows the best and mean values, and Fig. 

9(b) shows initial and final population members, for 

offline GA, DE, and PSO optimization. Fig. 10(a) 

and Fig. 10(b) shows simulated as well as 

experimental pH response and pump speed 

variations respectively, using offline GA, DE, and 

PSO optimized fuzzy logic controller. Table 2 gives 

performance summary of simulated and 

experimental responses of offline GA, DE, and PSO 

optimized fuzzy logic controller for SR operations 

on the basis of ISE and maximum overshoot or 

undershoot. Following observations are made for 

offline optimized fuzzy logic controller.  

(i) Offline GA optimization gives best simulated 

ISE as 73.88 and optimized parameters as [K1, K2, 

K3] = [25.22, 0.65, 14.15]. Experimental validation 

gives total ISE as 80.38 of which nearly 55% is 

accounted together for SR1, SR5, and SR6 

operations.  

(ii) Offline DE optimization gives best simulated 

ISE as 71.98 and optimized parameters as [K1, K2, 

K3] = [29.98, 0.75, 16.16]. Experimental validation 

gives total ISE as 67.96 of which nearly 54% is 

accounted together for SR1, SR5, and SR6 

operations.  

(iii) Offline PSO gives best simulated ISE as 72.26 

and optimized parameters as [K1, K2, K3] = [29.34, 

0.73, 15.75]. Experimental validation gives total ISE 

as 67.93 of which nearly 50% is accounted together 

for SR1, SR5, and SR6 operations.  

The offline optimization of fuzzy logic controller 

uses ANN based dynamic model which has its own 

limitation in representing actual real-time dynamics 

of the pH neutralization process. The nonlinear 

fuzzy logic controller uses membership functions 

whose degree varies with error and change in error. 

The variation in membership degree and choice of 

appropriate rules based on error and change in error 

allows variation in fuzzy logic controller output and 

makes fuzzy logic controller as intelligent. 

 

4.2 Offline Optimized Piecewise FLC 

Schemes for Servo and Regulatory 

Operations 
Offline optimization of piecewise FLC for pH 

neutralization process is carried out using MATLAB 

software in order to obtain optimal values of K1, K2, 

and K3 for SR1, SR2, SR3, SR4, SR5, and SR6 

operations. The performance of optimized piecewise 

fuzzy logic controller is evaluated on Armfiled pH 

neutralization process using LabVIEW software. 

Fig. 11(a) shows the best and mean values, and Fig. 

11(b) shows initial and final population members, 

for offline GA, DE, and PSO optimization. Fig. 

12(a) and Fig. 12(b) shows simulated as well as 

experimental pH response and pump speed 

variations respectively, using offline GA, DE, and 

PSO optimized piecewise fuzzy logic controller. 

Table 3 gives performance summary of simulated 

and experimental responses of offline GA, DE, and 

PSO optimized piecewise fuzzy logic controller for 

SR operations on the basis of ISE and maximum 

overshoot or undershoot. Following observations are 

made for offline optimized piecewise fuzzy logic 

controller.

 

                          
              (a)                                                                                            (b) 

Fig. 9 Offline GA, DE, and PSO based FLC optimization for SR operations (a) best and mean values, (b) initial and final population 

members 
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Fig. 10(a) Simulated and experimental pH responses of offline GA, DE, and PSO based FLC optimization for SR operations 

 

 
Fig. 10(b) Simulated and experimental pumps speed variations of offline GA, DE, and PSO based FLC optimization for SR operations 

 

 

Table 2 Simulation results/ Experimental performance of offline GA, DE, and PSO based FLC for SR operations 
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1
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Servo operation 

(200 samples) 

Regulatory operation 

(100 samples) 

Regulatory operation 

(100 samples) 

Regulatory operation 

(100 samples) 

Regulatory operation 

(100 samples) 

(pHSP)initial, 

(pHSP)final, 

DV 

ISE, 

maximum 

overshoot / 

undershoot 

pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

overshoot 
pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

undershoot 
pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

undershoot 
pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

overshoot 

Simulation Simulation Simulation Simulation Simulation 

Experiment Experiment Experiment Experiment Experiment 

GA 

For 

GA: 

[25.22, 

0.65, 

14.15] 

 

For 

DE: 

[29.98, 

0.75, 

16.16] 

 

For 

PSO: 

[29.34, 

0.73, 

15.75] 

6, 

7, 

35 

7.69,-0.09 

7, 

35, 

30 

1.35,-0.31 

7, 

30, 

35 

1.91,0.39 

7, 

35, 

40 

0.60,0.26 

7, 

40, 

35 

0.10,-0.24 

10.35,-0.24 1.22,-0.31 1.15,0.29 1.66,0.36 1.41,-0.26 

DE  
7.38,-0.13 1.41,-0.32 1.87,0.39 0.64,0.26 0.99,-0.25 

8.56,-0.35 1.41,-0.25 1.84,0.34 3.12,0.35 1.38,-0.26 

PSO 
7.39,-0.11 1.39,-0.31 1.86,0.39 0.65,0.27 0.98,-0.25 

7.09,-0.19 0.96,-0.23 1.59,0.37 1.25,0.28 0.78,-0.22 

GA 

7, 

8, 

35 

8.28,-0.08 

8, 

35, 

30 

0.66,-0.22 

8, 

30, 

35 

0.81,0.28 

8, 

35, 

40 

0.55,0.21 

8, 

40, 

35 

0.38,-0.17 

6.87,-0.09 0.50,-0.20 0.84,0.24 0.98,0.30 0.83,-0.24 

DE  
7.87,-0.14 0.67,-0.22 0.80,0.28 0.56,0.21 0.38,-0.17 

6.44,-0.17 0.55,-0.21 0.72,0.21 1.12,0.29 0.66,-0.19 

PSO 
7.92,-0.12 0.67,-0.22 0.81,0.28 0.56,0.21 0.38,-0.17 

6.19,-0.11 0.53,-0.16 0.72,0.19 0.82,0.21 0.55,-0.19 

GA 

8, 

9, 

35 

10.21,-0.01 

9, 

35, 

30 

0.47,-0.14 

9, 

30, 

35 

0.50,0.15 

9, 

35, 

40 

0.98,0.20 

9, 

40, 

35 

1.11,-0.20 

9.89,-0.02 0.46,-0.14 0.62,0.17 0.64,0.18 0.48,-0.15 

DE  
9.28,-0.01 0.48,-0.15 0.52,0.15 1.01,0.20 1.16,-0.20 

7.30,-0.02 0.42,-0.14 0.54,0.17 0.60,0.18 0.48,-0.15 

PSO 
9.48,-0.01 0.48,-0.15 0.52,0.15 1.02,0.20 1.17,-0.20 

9.77,-0.02 0.48,-0.13 0.72,0.16 0.60,0.15 0.51,-0.14 

GA 

9, 

8, 

35 

9.49,0.01 

8, 

35, 

30 

0.66,-0.22 

8, 

30, 

35 

0.81,0.28 

8, 

35, 

40 

0.55,0.21 

8, 

40, 

35 

0.38,-0.17 

11.47,0.08 0.50,-0.15 0.71,0.22 0.77,0.22 0.45,-0.15 

DE  
8.88,0.07 0.67,-0.22 0.80,0.28 0.56,0.21 0.38,-0.17 

9.38,0.12 0.53,-0.16 0.67,0.22 0.78,0.19 0.77,-0.19 

PSO 
8.99,0.05 0.68,-0.22 0.81,0.28 0.56,0.21 0.38,-0.17 

10.28,0.06 0.51,-0.15 0.81,0.20 0.80,0.17 0.55,-0.19 

GA 

8, 

7, 

35 

11.45,0.28 

7, 

35, 

30 

0.93,-0.25 

7, 

30, 

35 

1.93,0.39 

7, 

35, 

40 

0.61,0.26 

7, 

40, 

35 

0.10,-0.24 

9.65,0.10 0.59,-0.21 0.63,0.18 0.65,0.17 0.76,-0.21 

DE  
11.92,0.41 0.95,-0.25 1.88,0.39 0.65,0.27 0.99,-0.25 

6.72,0.12 1.47,-0.33 1.07,0.28 1.02,0.30 1.44,-0.23 

PSO 
11.73,0.38 0.96,-0.26 1.87,0.39 0.65,0.27 0.98,-0.25 

7.75,0.11 0.63,-0.18 1.30,0.22 1.17,0.22 1.54,-0.35 

GA 

7, 

6, 

35 

7.16,0.12 

6, 

35, 

30 

0.87,-0.24 

6, 

30, 

35 

0.73,0.22 

6, 

35, 

40 

0.49,0.21 

6, 

40, 

35 

0.31,-0.16 

13.49,0.11 0.67,-0.17 0.66,0.16 0.71,0.18 0.79,-0.17 

DE  
6.84,0.22 0.88,-0.24 0.74,0.22 0.50,0.21 0.31,-0.16 

6.77,0.06 0.47,-0.17 0.60,0.15 0.59,0.18 0.55,-0.16 

PSO 
6.90,0.20 0.89,-0.24 0.75,0.22 0.51,0.21 0.31,-0.16 

7.22,0.05 0.57,-0.18 0.67,0.18 0.83,0.22 0.74,-0.27 

 

 

 

5.5

6

6.5

7

7.5

8

8.5

9

9.5

1 601 1201 1801 2401 3001

p
H

 

Sample number 

pHSP pHsim (GA)

pHexp (GA) pHsim (DE)

pHexp (DE) pHsim (PSO)

pHexp (PSO)

20

25

30

35

40

45

50

55

60

1 601 1201 1801 2401 3001

P
u

m
p

 s
p

ee
d

 (
%

) 

Sample number 

Sa Sbsim (GA) Sbexp (GA)
Sbsim (DE) Sbexp (DE) Sbsim (PSO)
Sbexp (PSO)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
Parikshit Kishor Singh, Surekha Bhanot, 

Harekrishna Mohanta, Vinit Bansal

E-ISSN: 2224-2856 258 Volume 13, 2018



(i) Offline GA optimization gives best simulated 

ISE as 64.73 and optimized parameters as [K1, K2, 

K3] = [28.37, 0.84, 15.36] for SR1, [26.72, 0.80, 

19.08] for SR2, [8.18, 0.50, 29.43] for SR3, [29.79, 

0.95, 23.20] for SR4, [25.22, 0.59, 12.30] for SR5, 

[28.32, 0.93, 22.48] for SR6. Experimental 

validation gives total ISE as 66.12. 

(ii) Offline DE optimization gives best simulated 

ISE as 64.3618 and optimized parameters as [K1, 

K2, K3] = [30.00, 0.70, 15.00] for SR1, [30.00, 0.79, 

20.38] for SR2, [9.07, 0.52, 30.00] for SR3, [30.00, 

0.97, 23.78] for SR4, [29.96, 0.68, 13.92] for SR5, 

[28.80, 0.92, 22.39] for SR6. Experimental 

validation gives total ISE as 64.36.  

(iii) Offline PSO gives best simulated ISE as 

64.4981 and optimized parameters as [K1, K2, K3] = 

[29.89, 0.69, 14.73] for SR1, [27.49, 0.79, 19.57] 

for SR2, [9.26, 0.50, 29.87] for SR3, [29.83, 0.95, 

23.02] for SR4, [27.39, 0.63, 13.07] for SR5, [28.31, 

0.94, 22.43] for SR6. Experimental validation gives 

total ISE as 64.81.  

In comparison with offline optimized FLC for SR 

operations, use of offline optimized piecewise FLC 

for SR operations brings ISE values down by 

amount 14.26 for GA, 3.61 for DE, and 3.12 for 

PSO. Further it is evident from Table 3 that pH 

control for SR1 and SR5 cases is most challenging 

task. 

 

4.3 Online Optimized piecewise FLC 

Schemes for Servo and Regulatory 

Operations 
Online optimization of piecewise FLC for pH 

neutralization process is carried out using LabVIEW 

software in order to obtain optimal values of K1, K2, 

and K3 for SR1 and SR5 operations. Fig. 13(a) and 

Fig. 15(a) shows the best and mean values, and Fig. 

13(b) and Fig. 15(b) shows initial and final 

population members, for online GA, DE, and PSO 

optimization of SR1 and SR5 operations 

respectively. Fig. 14(a) and Fig. 16(a) shows pH 

response, and Fig. 14(b) and Fig. 16(b) shows pump 

speed variations obtained experimentally, using 

online GA, DE, and PSO optimized piecewise fuzzy 

logic controller for SR1 and SR5 operations 

respectively. Table 4 gives performance summary of 

experimental responses of online GA, DE, and PSO 

optimized piecewise fuzzy logic controller for SR1 

and SR5 operations on the basis of ISE and 

maximum overshoot or undershoot. Following 

observations are made for online optimized 

piecewise fuzzy logic controller. 
 

                                        
(i)                                                                                                               (iv) 

                                        
(ii)                                                                                                               (v)        

                                       
   (iii)                                                                                                           (vi) 

Fig. 11(a) Best and mean ISE values of offline GA, DE, and PSO based piecewise FLC optimization for SR operations (i) SR1 (ii) SR2 

(iii) SR3 (iv) SR4 (v) SR5 (vi) SR6 
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                    (i)                                                                                                            (iv) 

                                        
           (ii)                                                                                                          (v) 

                                             
        (iii)                                                                                                             (vi) 

Fig. 11(b) Initial and final population members of offline GA, DE, and PSO based piecewise FLC optimization for SR operations (i) 

SR1 (ii) SR2 (iii) SR3 (iv) SR4 (v) SR5 (vi) SR6 

 

 

 
Fig. 12(a) Simulated and experimental pH responses of offline GA, DE, and PSO based piecewise FLC optimization for SR operations 

 

 
Fig. 12(b) Simulated and experimental pumps speed variations of offline GA, DE, and PSO based piecewise FLC optimization for SR 

operations 
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Table 3 Simulation results/Experimental performance of offline GA, DE, and PSO based piecewise FLC for SR operations 
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0.84, 

15.36] 

6, 

7, 

35 

7.11,-0.20 

7, 

35, 

30 

1.68,-0.34 

7, 

30, 

35 

1.59,0.37 

7, 

35, 

40 

0.80,0.30 

7, 

40, 

35 

1.07,-0.28 

7.59,-0.37 0.91,-0.29 1.20,0.38 1.77,0.31 2.76,-0.48 

DE  
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15.00] 

7.39,-0.08 1.29,-0.30 1.80,0.39 0.70,0.28 0.94,-0.25 

9.18,-0.21 1.69,-0.33 0.95,0.22 1.93,0.32 0.91,-0.23 

PSO 

[29.89, 

0.69, 

14.73] 

7.41,-0.07 1.31,-0.30 1.77,0.38 0.71,0.28 0.94,-0.25 

7.61,-0.22 1.04,-0.28 1.06,0.25 1.43,0.27 1.95,-0.39 

GA 

[26.72, 

0.80, 

19.08] 

7, 

8, 

35 

6.96,-0.24 

8, 

35, 

30 

0.52,-0.21 

8, 

30, 

35 

0.69,0.26 

8, 

35, 

40 

0.39,0.20 

8, 

40, 

35 

0.32,-0.17 

6.78,-0.16 0.33,-0.12 0.46,0.16 0.64,0.23 0.41,-0.13 

DE  

[30.00, 

0.79, 

20.38] 

6.89,-0.25 0.53,-0.21 0.69,0.26 0.36,0.19 0.31,-0.16 

6.39,-0.12 0.45,-0.19 0.47,0.17 0.74,0.19 0.63,-0.15 

PSO 

[27.49, 

0.79, 

19.57] 

6.93,-0.25 0.52,-0.21 0.68,0.26 0.37,0.20 0.31,-0.17 

6.16,-0.12 0.42,-0.16 0.50,0.15 0.74,0.25 0.45,-0.15 

GA 

[8.18, 

0.50, 

29.43] 

8, 

9, 

35 

6.67,-0.05 

9, 

35, 

30 

0.08,-0.09 

9, 

30, 

35 

0.05,0.08 

9, 

35, 

40 

0.10,0.10 

9, 

40, 

35 

0.07,-0.09 

5.08,-0.05 0.04,-0.06 0.05,0.07 0.06,0.09 0.05,-0.07 

DE  

[9.07, 

0.52, 

30.00] 

6.63,-0.06 0.07,-0.08 0.05,0.07 0.10,0.10 0.08,-0.10 

5.52,-0.04 0.05,-0.07 0.06,0.08 0.04,0.05 0.04,-0.07 

PSO 

[9.26, 

0.50, 

29.87] 

6.67,-0.04 0.07,-0.08 0.05,0.07 0.09,0.10 0.08,-0.09 

5.08,-0.03 0.04,-0.07 0.05,0.07 0.06,0.08 0.03,-0.06 

GA 

[29.79, 

0.95, 

23.20] 

9, 

8, 

35 

9.29,0.18 

8, 

35, 

30 

0.51,-0.21 

8, 

30, 

35 

0.66,0.26 

8, 

35, 

40 

0.34,0.19 

8, 

40, 

35 

0.30,-0.17 

9.82,0.06 0.29,-0.13 0.38,0.14 0.39,0.12 0.23,-0.14 

DE  

[30.00, 

0.97, 

23.78] 

9.29,0.18 0.50,-0.21 0.66,0.26 0.34,0.19 0.30,-0.17 

9.90,0.05 0.27,-0.13 0.40,0.17 0.39,0.19 0.26,-0.12 

PSO 

[29.82, 

0.95, 

23.02] 

9.30,0.18 0.51,-0.21 0.66,0.26 0.35,0.20 0.31,-0.17 

10.05,0.11 0.43,-0.18 0.34,0.14 0.42,0.16 0.28,-0.16 

GA 

[25.22, 

0.59, 

12.30] 

8, 

7, 

35 

11.21,0.10 

7, 

35, 

30 

1.24,-0.29 

7, 

30, 

35 

1.70,0.38 

7, 

35, 

40 

0.72,0.27 

7, 

40, 

35 

0.95,-0.26 

9.28,0.09 0.44,-0.16 0.65,0.17 0.84,0.20 0.64,-0.20 

DE  

[29.96, 

0.68, 

13.93] 

11.08,0.21 1.29,-0.30 1.68,0.38 0.76,0.28 0.94,-0.26 

8.35,0.10 0.63,-0.19 0.57,0.17 0.60,0.19 0.48,-0.15 

PSO 

[27.39, 

0.63, 

13.07] 

11.13,0.15 1.26,-0.30 1.70,0.38 0.74,0.28 0.94,-0.26 

8.43,0.06 0.69,-0.21 0.62,0.17 0.67,0.20 0.84,-0.23 

GA 

[28.32, 

0.93, 

22.48] 

7, 

6, 

35 

8.06,0.39 

6, 

35, 

30 

0.56,-0.22 

6, 

30, 

35 

0.50,0.21 

6, 

35, 

40 

0.33,0.20 

6, 

40, 

35 

0.25,-0.16 

13.51,0.04 0.47,-0.13 0.42,0.12 0.31,0.10 0.33,-0.11 

DE  

[28.80, 

0.92, 

22.39] 

8.03,0.39 0.57,-0.22 0.51,0.21 0.34,0.20 0.25,-0.16 

12.11,0.03 0.29,-0.11 0.33,0.11 0.39,0.11 0.34,-0.11 

PSO 

[28.31, 

0.94, 

22.43] 

8.04,0.40 0.57,-0.22 0.51,0.21 0.34,0.20 0.25,-0.16 

14.12,0.02 0.29,-0.09 0.38,0.11 0.34,0.10 0.29,-0.09 

 

(i) Online GA optimization gives best experimental 

ISE as 8.79 for SR1, and 10.83 for SR5, and 

optimized parameters as [K1, K2, K3] = [22.68, 0.64, 

27.93] for SR1, and [28.52, 0.76, 23.18] for SR5. 

We know that GA assumes the population member 

with least ISE in a particular generation as elitist 

member. For online experimentation, it is possible 

that a population member has different ISE values 

over successive generations, as shown in Fig. 13(a) 

and Fig. 15(a).  

(ii) Online DE optimization gives best experimental 

ISE as 9.79 for SR1, and 11.39 for SR5, and 

optimized parameters as [K1, K2, K3] = [26.94, 

0.850, 28.06] for SR1, and [28.64, 0.77, 29.79] for 

SR5.  

(iii) Online PSO gives best experimental ISE as 9.34 

for SR1, and 9.46 for SR5, and optimized 

parameters as [K1, K2, K3] = [25.50, 0.64, 27.97] for 

SR1, and [28.87, 0.78, 23.88] for SR5. 
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   (a)                                                                                             (b) 

Fig. 13 Online GA, DE, and PSO based FLC optimization for SR1 operations (a) best and mean values, (b) initial and final population 

members 

              
   (a)                                                                                             (b) 

Fig. 14 Online GA, DE, and PSO based FLC optimization for SR1 operations (a) pH responses, (b) pumps speed variations 

 

                                
   (a)                                                                                             (b) 

Fig. 15 Online GA, DE, and PSO based FLC optimization for SR5 operations (a) best and mean values, (b) initial and final population 

members 

              
   (a)                                                                                             (b) 

Fig. 16 Online GA, DE, and PSO based FLC optimization for SR5 operations (a) pH responses, (b) pumps speed variations 

 

Table 4 Experimental performance of online GA, DE, and PSO based FLC for SR1 and SR5 operations 

O
p
ti

m
iz

at
io

n
 

m
et

h
o
d
s 

Optimized 

parameters 

[K1,K2,K3] 

Servo operation 

(200 samples) 

Regulatory operation 

(100 samples) 

Regulatory operation 

(100 samples) 

Regulatory operation 

(100 samples) 

Regulatory operation 

(100 samples) 

(pHSP)initial, 

(pHSP)final, 

DV 

ISE, 

maximum 

overshoot / 

undershoot 

pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

overshoot 

pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

undershoot 

pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

undershoot 

pHSP, 

(DV)initial, 

(DV)final 

ISE, 

maximum 

overshoot 

GA [22.68,0.64,27.93] 6, 

7, 

35 

7.49,-0.12 7, 

35, 

30 

0.35,-0.19 7, 

30, 

35 

0.22,0.13 7, 

35, 

40 

0.53,0.15 7, 

40, 

35 

0.19,-0.14 

DE  [26.94,0.85,28.06] 5.77,-0.24 0.31,-0.14 0.77,0.22 1.65,0.29 1.30,-0.23 

PSO [25.50,0.64,27.97] 7.71,-0.12 0.33,-0.14 0.31,0.14 0.48,0.16 0.50,-0.19 

GA [28.52,0.76,23.18] 8, 

7, 

35 

8.15,0.10 7, 

35, 

30 

0.72,-0.23 7, 

30, 

35 

0.84,0.23 7, 

35, 

40 

0.57,0.24 7, 

40, 

35 

0.56,-0.16 

DE  [28.64,0.77,29.79] 8.80,0.08 0.57,-0.25 0.55,0.17 0.63,0.17 0.84,-0.26 

PSO [28.87,0.78,23.88] 7.42,0.09 0.29,-0.14 0.52,0.16 0.60,0.15 0.63,-0.25 
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5 Conclusion 
In this paper, Armfield

®
 Process Control Teaching 

System (PCT40) along with Process Vessel 

Accessory (PCT41) and pH Sensor Accessory 

(PCT42) has been used for testing performance of 

modeling and control strategies developed for strong 

acid-strong base i.e. Hydrochloric acid (HCl)-

Sodium Hydroxide (NaOH) neutralization process. 

Feedforward ANN structure using tapped delay line 

is applied to model Armfield pH neutralization 

system using total 32750 data samples covering pH 

range from 4 to 10 for training, validation, and 

testing of the network. It is found that for three 

delayed input-output samples, ANN model using 

LM training function gives reasonably acceptable 

performance values. The feedback control of 

Armfield pH neutralization process for servo and 

regulatory operations has been done using optimized 

Mamdani Fuzzy Inference System (FIS) based 

Fuzzy Logic Control (FLC). The global 

optimization techniques namely Genetic algorithm 

(GA), Differential Evolution (DE), and Particle 

Swarm Optimization (PSO) are used to optimize pH 

controller parameters i.e. scaling factors K1, K2 and 

K3 for normalized error, change in error and change 

in output respectively for FLC. Offline optimization 

uses dynamic ANN model, and online optimization 

uses Armfield neutralization process. Servo and 

regulatory operations incorporate dynamic pH 

variations from 6 to 9, and disturbance variable 

variations from 30% to 40% in acidic stream 

flowrates. The offline optimized fuzzy logic 

controller performance using GA, DE and PSO in 

terms of Integral Square of Error (ISE) is near to the 

experimentally obtained result. Based on final 

population convergence result for offline 

optimization with moderate number of generations it 

is concluded that DE is best followed successively 

by PSO and GA. To address nonlinearity of pH 

neutralization process, fuzzy logic controllers are 

designed for six different regions of dynamic pH 

range from 6 to 9 in piecewise manner. Based on 

experimental responses of fuzzy logic controller it is 

concluded that piecewise optimization using GA, 

DE and PSO results in improved performance. 

Finally, GA, DE and PSO based online optimization 

of piecewise fuzzy logic controller are carried for 

pH setpoint changes from 6 to 7, and 8 to 7, with 

acidic flow rate variations from 30% to 40% at pH 

setpoint of 7. The ISE performance values confirm 

that all three global optimization techniques give 

approximately similar results. Based on ease of 

implementation for online optimization with small 

number of generations it is concluded that DE has 

most simplistic algorithm followed successively by 

PSO and GA. 
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